
A computer implemented philosophy of
mathematics

M. Randall Holmes

June 5, 2020

This paper presents a philosophical view of the basic foundations of math-
ematics, which is implemented in actual computer software. The nature of
the philosophical view is partially expressed in the fact that it can be imple-
mented in actual computer software.

An important aspect of the view of mathematics that we are presenting
is that the objects of mathematics are understood as being in a sense finite1.
Though the mathematics we implement is classical and allows the implemen-
tation of ZFC and other theories of infinite sets, its native view is that all
infinities are potential rather than actual. The way this is achieved is by
viewing objects as (abstractions from) the expressions used to denote them
[while not failing to notice the importance of the distinction between use
and mention!] For some objects this requires no special comment (confusing
natural numbers and the numerals used to represent them is harmless, as the
sequence of numerals exhibits the formal properties required of an implemen-
tation of the natural numbers!) For functions (and sets) this does require
comment. For us the notion of function is primitive (and “sets” are defined as
functions2), and we view a function as a finitely presented object which can
be applied to a (potential) infinity of diverse arguments of appropriate sorts.
Again, the underlying view is that mathematical objects can be understood
as abstracted from notation: the function f(x) = x2 + 1 is abstracted from
the expression x2 + 1, in which the variable x is understood as the argument
(this can be written more formally as (x 7→ x2 + 1) or (λx : x2 + 1)). The

1which correlates well with “implementable on a computer”.
2The same approach can be taken with the notion of set as primitive, by viewing sets

(and relations) as abstracted from open sentences.

1



expression x2+1 is a finitely given object which shows us how to compute the
value of the function at any argument which may be presented to us [rather
than an infinite table presenting all the values at once].

It is important to reiterate that in spite of this we will be able to imple-
ment ZFC and other theories of infinite sets, which rely on quite different
intuitive pictures of what mathematical objects (and functions in particular)
are like, without difficulty.

A second important aspect of the view of mathematics we take is that
proofs are understood as mathematical objects. We make extensive use of (a
version of) the Curry Howard isomorphism. We postulate a sort of propo-
sitions (called prop) and for each proposition p we postulate a sort that p
inhabited by proofs of the proposition p (we sometimes prefer to refer to
elements of that p as “evidence for p”). In usual presentations of the Curry-
Howard isomorphism, a proof of p∧ q may be understood as an ordered pair
consisting of a proof of p and a proof of q; a proof of p→ q can be understood
as a function from evidence for p to evidence for q. This is a well understood
idea extensively developed in many other places. The Curry Howard iso-
morphism is usually taken as relating theorems of postulateive logic to type
constructions, but it is readily adaptable to classical logic.

More generally, mathematical objects in our scheme belong to sorts. (We
say sorts rather than types because the name type has a special internal role
in our framework, as we shall see shortly). The most popular foundations
of mathematics are superficially untyped, but the use of types is ubiquitous
in practical mathematics (even as implemented in the untyped ZFC) and
the use of the Curry Howard isomorphism to implement logic means that
the implementation of ZFC or other unsorted mathematical foundations in
our framework actually involves the use of sorted objects. We provide a
sort obj of “untyped mathematical objects” (the sets of an implementation
of ZFC would be of sort obj) and a sort type of objects τ correlated with
sorts in τ , each such sort being understood as inhabited by mathematical
objects of a type labelled by the object τ . We will refer to objects of sort
type as “type labels”, though we may carelessly refer to them as “types” on
occasion. When we are speaking carefully in terms of our own framework,
what we mean by “x is of type τ” is “x is of sort in τ”.

Though the intentions of the prop/that p machinery are naturally viewed
as different from the intentions of the type/in τ machinery, the two schemes
are isomorphic from the standpoint of our software. Of course it is likely
that the additional axioms governing propositions and proofs in a specific

2



theory implemented in our framework will be noticeably different from those
governing type labels and typed mathematical objects.

The objects of the sorts obj, prop, type, that p and in τ are collectively
referred to as “entities”, and these are in some sense the first class objects of
theories built using the framework we are presenting. The objects we have
yet to describe are “abstractions” (functions) and while they might in a sense
not be viewed as first class objects [this might be a matter of debate] they
are certainly essential to getting anything done in this framework.

Briefly, each abstraction is a function of an abstraction sort

[(x1, σ1), . . . , (xn : σn)⇒ τ ],

where each xi is a variable of the entity or abstraction sort σi, τ is an entity
sort (which may depend on any or all of the variables xi) and each σj may
depend on any or all of the xi’s with i < j.

If f is of sort [(x1, σ1), . . . , (xn : σn)⇒ τ ] then f(t1, . . . , tm) is well-formed
iff m = n and additional conditions hold which we now present.

1. If n = 1 and the sort of t1 is σ1, the sort of f(t1) is τ [t1/x1] (noting the
potential dependence of the output sort on the input). If the sort of
t1 is not σ1, the term is not well-sorted, and is regarded as ill-formed.
It is worth noting that the equivalence of the sort of t1 and σ1 may be
established using definitional expansion or renaming of bound variables.

2. If n > 1, the sort of f(t1, . . . , tn) is the same as the output of a function
of sort

[(x2, σ2[t1/x1]), . . . , (xn : σn[t1/x1])⇒ τ [t1/x1]]
3

applied to the argument list (t2, . . . , tn), if the sort of t1 is σ1 and
the complex term indicated is well-sorted, and otherwise the term
f(t1, . . . , tn) is not well-sorted and regarded as ill-formed.

Abstractions may be given as atomic primitives or as complex abstraction
terms

[(x1, σ1), . . . , (xn : σn)⇒ D : τ ].

If f is defined as
[(x1, σ1), . . . , (xn : σn)⇒ D : τ ],

3such a function can be presented as the referent of a suitable complex abstraction
term: this definition will not fail as the result of no such function being available.

3



then the sort of f is

[(x1, σ1), . . . , (xn : σn)⇒ τ ],

subject to conditions on the term D to be stated:

1. if n = 1, the value f(t1) is D[t1/x1] if n = 1 if this has sort τ [t1/x1]
(otherwise f is ill-formed)

2. if n > 1 the value of f(t1, . . . , tn) is the result of applying

[(x2, σ2[t1/x1]), . . . , (xn : σn[t1/x1])⇒ D[t1, x1] : τ [t1/x1]]

to the argument list (t2, . . . , tn) (if this is well-formed and has the ex-
pected sort: otherwise f is ill-formed).

The definition of substitution requires care in the presence of the bound
variables in the abstraction sorts and complex abstraction terms: the diffi-
culties are neatly handled by requiring that all the bound variables xi in an
abstraction sort or complex abstraction term be replaced with fresh variables
before any substitution is made into the sort or term (and that abstraction
sorts or complex abstraction terms differing only by a renaming of their
bound variables are to be identified).

It is further worth noting that in the software and its documentation
a complex abstraction term is in effect treated as a subsort (with a single
inhabitant) of the sort to which its referent abstraction belongs (so the in-
ternally recorded sort of a complex abstraction is itself). This is harmless
but should be noted so that one can better understand interactions with the
system. Complex abstraction terms also occur as arguments in terms, in
which case they do not of course denote their own subsort, but rather its sole
inhabitant.

What appears above is a very compact full description of the type/sort
system and language of the framework we implement in our software, but
this is not the way the user of our software postulates or defines objects.
In fact, the user never writes a complex abstraction term (function name or
λ-term) in an interaction with the software (at least in its current version)
though she may be shown such terms in system responses, nor does the user
ever write an abstraction sort. In the user language, all terms standing for
abstractions are atomic names, which may appear in applied position or as

4



arguments in application terms f(t1, . . . , tn). It is important to notice that
all application terms are of entity sorts.

The user introduces constructions of primitive objects of given sorts (this
is how not only primitive notions but also axioms are introduced in this
framework) and definitions of objects whose existence follows from the exis-
tence of the primitives within the framework of a system of “worlds”. The
underlying metaphor is that an abstraction is constructed in a given world
(the parent world) by postulating or defining an entity of a suitable sort in
a further world accessible from that world (which we call the current world)
with the entity and its sort depending suitably on entities and abstractions
already postulated in the current world (which we may think of as the vari-
able parameters of the abstraction being defined).

The simplest version of the scheme of worlds has the user interacting at
any particular moment with a concrete finite sequence of worlds indexed by
natural numbers 0, 1, . . . , i, i+1. There are always at least two worlds. World
i is called the parent world and world i+ 1 is called the current world.

Each world contains a finite collection of declarations of atomic identifiers
as being of particular entity and abstraction sorts. The identifiers in each
world are given in the order in which they were declared, and the sorts of
later identifiers depend only on identifiers appearing earlier in the order on
the same world or appearing in some lower-indexed world. All identifiers
declared in worlds 0, 1, . . . , i, i + 1 are available for use in terms and sorts
entered by the user in the execution of the basic operations we now describe.

The user may open a new world. A new empty world i+ 2 is created and
the parameter i is incremented, so the former world i+1 becomes the parent
world and the new world i+ 2 becomes the current world.

The user may close the current world. World i + 1 is discarded and
all of the declarations it contains become unusable. The parameter i is
decremented, so the former world i becomes the current world and the former
world i−1 becomes the parent world. The close command cannot be issued
if i = 1.

The user may declare a new entity identifier of a given entity sort. The
form of the command is declare x σ, where x is a fresh atomic identifier
and σ is an entity sort term. The system will check that the atomic identifier
declared by the user is fresh and that the entity sort provided for it is well-
sorted (a sort that p must have the possibly complex term p of sort prop

and a sort in τ must have the possibly complex term τ of sort type: there
is something nontrivial to be done here). The identifier is declared with the

5



given sort and placed last among the declarations in the current world.
The user may postulate a new primitive entity or abstraction.
The command postulate t : σ where t is a fresh atomic identifier and σ

is an entity sort has the effect of declare t σ, except that the identifier t is
declared in the parent world (it is a new constant rather than a new variable)
and the sort σ may be expanded to eliminate reference to defined identifiers
declared in the current world. The sort σ cannot depend essentially on any
non-defined identifier declared in the current world.

The command postulate f(x1, . . . xn) : τ , where f is a fresh identifier,
x1, . . . , xn are atomic identifiers declared in exactly that order in the current
world (and not defined: these identifiers must have been introduced using
the declare or postulate commands), of sorts σ1, . . . σn respectively, and τ
is an entity sort possibly depending on some or all of the xi’s, declares a new
abstraction identifier f in the parent world of sort

[(x1, σ1), . . . , (xn : σn)⇒ τ ],

subject to expansion to eliminate all defined identifiers declared in the current
world (and this sort cannot depend in an essential way on any non-defined
identifier declared in the current world other than the xi’s, which become
bound variables in this abstraction sort: the abstraction sort can be thought
of as having its own little subworld of the current world in its internal makeup,
which contains only the xi’s, with fresh names different from the names
appearing in the current world). The restriction that the arguments are
given in the order in which they are declared ensures that any dependencies
will be of kinds permitted by the type/sort system.

It might appear that we have only allowed variables xi of entity sorts
to be declared, but this is not the case. Constructing an abstraction in the
parent world then closing the current world gives an abstraction identifier
declared in the current world which can be used as an argument in instances
of the postulate command or the following define command.

The user can define objects whose existence follows from the existence of
the given primitives.

The command define t : D introduces the identifier t in the parent
world, abbreviating the term D if the latter entity term is well-sorted. The
sort recorded for t will be [D : τ ], if τ is the (entity) sort of D: this denotes
the subsort of τ with the referent of D (and t) as its sole inhabitant. This
is subject to the proviso that any defined identifier declared in the current

6



world which appears in D or in τ is eliminable. D cannot depend essentially
on a non-defined identifier declared in the current world. We are defining a
constant here in the parent world, and the definition must continue to make
sense if the current world is closed.

The command define f(x1, . . . xn) : D, where f is a fresh identifier,
x1, . . . , xn are atomic identifiers declared in exactly that order in the current
world (and not defined: these identifiers must have been introduced using
the declare or postulate commands), of sorts σ1, . . . σn respectively, and D
is an entity term possibly depending on some or all of the xi’s , well-sorted
with entity sort τ possibly depending on some or all of the xi’s, declares a
new abstraction identifier f in the parent world of sort

[(x1, σ1), . . . , (xn : σn)⇒ D : τ ],

(this complex abstraction term is interpreted as the subsort of its actual sort

[(x1, σ1), . . . , (xn : σn)⇒ τ ]

with its complex abstraction referent as sole inhabitant, and f is understood
as referring to that complex abstraction) subject to expansion to eliminate
all defined identifiers declared in the current world. The restriction that the
arguments are given in the order in which they are declared ensures that any
dependencies will be of kinds permitted by the type/sort system.

Note that defined identifiers are only declared in the parent world, but if
the current world were closed we would then have defined identifiers in the
current world.

Defined identifiers in applied position can be expanded away by substitu-
tion (β-reduction, in effect) as indicated above. Defined identifiers declared
in the current world will be replaced by complex abstraction terms if they
appear in argument position in terms appearing in sorts of objects declared
in the parent world: the user never enters complex abstraction terms (in-
deed, the parser of Lestrade has no provision as yet to handle them), but
complex abstraction terms may appear in sorts reported by the system when
identifiers referring to them pass out of scope as described here.

The sort checker will view sorts as being the same for purposes of check-
ing terms as well sorted if expansion of definitions (and renaming of bound
variables in abstraction sorts) make them the same. The sort checker will
only actually expand defined identifiers in the sorts it reports if forced to

7



do so due to the defined identifiers being declared in the current world but
appearing in sorts to be recorded in the parent world.

What we have described so far are the core user functions of the software
implementing the philosophy of mathematics we are describing. The software
is currently called Lestrade (I am Holmes; I hope I may be forgiven for the
humor). There are further features of the software, some of which have some
additional logical force, but the basic philosophy is implemented at this point,
and examples will now be given to illustrate why this can be viewed as an
actual implementation of what mathematicians do. It should also be visible
at this point that the implementation is a variant of something that already
exists: this is a dialect of the ancient proof-checker Automath, though there
are instructive differences between Lestrade and Automath. The fact that
it is a full implementation of Automath may require some confirmation as
well: Lestrade is like the initial variant PAL of Automath in not making
explicit complex abstraction terms available to the user, though it in fact
gives the user full access to the referents of such terms. The privileges of
abstraction sorts are limited in other ways unexpected to an Automath user,
which limit the logical strength of the Lestrade logical framework considered
by itself, though Lestrade is strong enough to implement any Automath
theory (Lestrade will require explicit declarations of primitive constructions
by the user to do some things which the primitives of Automath support
without any additional user declarations).

We now present evidence that Lestrade implements logic.

Lestrade execution:

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

8



postulate & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

postulate Andi p q pp qq : that p & q

>> Andi: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (qq_1:that q_1) => (---:that (p_1 & q_1))]

>> {move 0}

declare rr that p & q

>> rr: that (p & q) {move 1}

postulate Ande1 p q rr that p

>> Ande1: [(p_1:prop),(q_1:prop),(rr_1:that

>> (p_1 & q_1)) => (---:that p_1)]

9



>> {move 0}

postulate Ande2 p q rr that q

>> Ande2: [(p_1:prop),(q_1:prop),(rr_1:that

>> (p_1 & q_1)) => (---:that q_1)]

>> {move 0}

Our first sample of dialogue with Lestrade presents the basic primitives
related to conjunction. We introduce variable propositions p and q, and
postulate the operation of conjunction which postulates a proposition p ∧ q
from the propositions p and q.

We then present variables pp, qq and rr of sorts that p, that q and
that p ∧ q respectively which we can think of as evidence for the respective
propositions. We then declare a rule Andi of conjunction introduction which
gives a proof of p ∧ q given proofs of p and q, and the two conjunction
elimination rules which, given a proof rr of p ∧ q return respectively a proof
of p and a proof of q.

Lestrade execution:

postulate -> p q : prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare ss that p -> q

>> ss: that (p -> q) {move 1}

10



postulate Mp p q pp ss : that q

>> Mp: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (ss_1:that (p_1 -> q_1)) => (---:that

>> q_1)]

>> {move 0}

open

declare pp1 that p

>> pp1: that p {move 2}

postulate Ded pp1 that q

>> Ded: [(pp1_1:that p) => (---:that q)]

>> {move 1}

close

postulate Impi p q Ded : that p -> q

>> Impi: [(p_1:prop),(q_1:prop),(Ded_1:[(pp1_2:

>> that p_1) => (---:that q_1)])

>> => (---:that (p_1 -> q_1))]

>> {move 0}

Our second block of dialogue with Lestrade implements primitives related
to implication.

11



The declaration of implication itself is unremarkable.
The declaration of the rule of modus ponens is similar in quality to the

rules for conjunction.
The rule Impi of implication introduction is more novel. The basic idea

is that a function Ded which takes evidence for p to evidence for q provides
evidence for (a proof of) p → q. To obtain such a function Ded in world 1,
we need to open world 2, declare evidence pp1 for p, postulate evidence Ded

pp1 for q (as a primitive) then close world 2. This gives us a variable Ded of
the correct type in world 1 and allows us to declare Impi in world 0.

It is important to note that the proof of an implication p → q is not
identified with a function from evidence for p to evidence for q, as in a con-
ventional presentation of the Curry-Howard isomorphism, and as is the case
in Automath. For Lestrade, types that p are entity types, precluded from
actually being inhabited by abstractions (functions). What is done instead
is that a construction casts functions from that p to that q to evidence for
p → q; the rule of modus ponens allows us to present a function correlated
with evidence for p→ q as well. We present a snippet of Lestrade dialogue:

Lestrade execution:

%% an experiment in getting a function from proofs

% to proofs from evidence for an implication.

declare ev that p -> q

>> ev: that (p -> q) {move 1}

open

declare pp1 that p

>> pp1: that p {move 2}

12



define evfn pp1 : Mp p q pp1 ev

>> evfn: [(pp1_1:that p) => (---:that q)]

>> {move 1}

close

We get evfn, a function from that p to that q. correlated with the
evidence ev for p → q. We cannot however present a function taking ev to
evfn for technical reasons: a Lestrade abstraction cannot have abstraction
output.4

It is a general feature of functions declared so far that they have arguments
that seem redundant. In the case of Impi, if we are given Ded we know what
p and q must be, but p and q must appear as arguments. The rule is that the
type of Impi cannot depend on any non-defined atomic identifier declared in
the current world which does not appear in its argument list.

Another interesting point to note is that Lestrade knows about infix no-
tation. A function with two arguments whose first argument is not an ab-
straction will be displayed as an infix in Lestrade output. Lestrade will read
terms t1ft2 . . . tn as f(t1, . . . , tn) when t1 is not an abstraction (and of course
when f is an abstraction of the correct sort). Lestrade is not smart about
operator precedence: it treats all infix or mixfix operators as having the same
precedence and groups to the right (it is never a mistake to use more paren-
theses, though with one caution to be given below). When an abstraction
is followed by its arguments, they may be enclosed in parentheses and may
be separated by commas. If the first argument is enclosed in parentheses,
the entire argument list must also be enclosed in parentheses. In some cases
a comma must be inserted before and/or after an abstraction argument to
avoid it being read as a prefix or mixfix operator. Arguments in a mixfix
term after the abstraction may be separated by commas, but the entire list
of arguments after the abstraction will not be enclosed in parantheses (unless
there is only one argument). The Lestrade display shows lots of parentheses
and commas.

4We acknowledge that we need to discuss the rationale behind this restriction at some
point.

13



Lestrade execution:

% we try to prove (p & q) -> (q & p)

open

declare hyp that p & q

>> hyp: that (p & q) {move 2}

define step1 hyp: Ande1 p q hyp

>> step1: [(hyp_1:that (p & q)) => (---:that

>> p)]

>> {move 1}

define step2 hyp: Ande2 p q hyp

>> step2: [(hyp_1:that (p & q)) => (---:that

>> q)]

>> {move 1}

define step3 hyp: Andi q p (step2 hyp) \

(step1 hyp)

>> step3: [(hyp_1:that (p & q)) => (---:that

>> (q & p))]

>> {move 1}

14



close

define Testthm p q : Impi (p & q, q & p, \

step3)

>> Testthm: [(p_1:prop),(q_1:prop) => (Impi((p_1

>> & q_1),(q_1 & p_1),[(hyp_2:that (p_1 &

>> q_1)) => (Andi(q_1,p_1,Ande2(p_1,q_1,

>> hyp_2),Ande1(p_1,q_1,hyp_2)):that (q_1

>> & p_1))])

>> :that ((p_1 & q_1) -> (q_1 & p_1)))]

>> {move 0}

Our third block of dialogue with Lestrade is the proof of a theorem,
p∧ q → q ∧ p. To prove this theorem we need to postulate a function taking
evidence for p∧ q to evidence for q ∧ p. To define such a function, we open a
block in which we declare hypothetical evidence hyp for p∧ q, then postulate
an expression step3 hyp which is evidence for q ∧ p, whence by abstraction
we have constructed a function taking proofs of p∧ q to proofs of q∧ p in the
parent world, which is suitable to serve as an argument to Impi to produce
a proof of the desired theorem. Notice that the theorem Testthm that we
prove is itself a function taking propositions p and q as arguments (so we can
postulate proofs of all instances of this theorem of propositional logic).

Another point to notice is that we can see expansion of definitions at
work. The definition of step3 includes occurrences of the defined notions
step1 and step2, and these identifiers occur in the sort reported for step3

by Lestrade. But the sort reported for Testthm contains no occurrences
of the identifiers step1, step2 and step3. The occurrences of step1 and
step2 are in applied position and are eliminated by expansion of definitions.
The identifier step3 occurs as an argument, and is expanded to a complex
abstraction term.

15


